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The Gauss linking number �Ca� of two flexible polymer rings which are tethered to one another is investi-
gated. For ideal random walks, mean linking-squared varies with the square root of polymer length while for
self-avoiding walks, linking-squared increases logarithmically with polymer length. The free-energy cost of
linking of polymer rings is therefore strongly dependent on degree of self-avoidance, i.e., on intersegment
excluded volume. Scaling arguments and numerical data are used to determine the free-energy cost of fixed
linking number in both the fluctuation and large-Ca regimes; for ideal random walks, for �Ca��N1/4, the free
energy of catenation is found to grow ��Ca /N1/4�4/3. When excluded volume interactions between segments are
present, the free energy rapidly approaches a linear dependence on Gauss linking �dF /dCa�3.7kBT�, sugges-
tive of a novel “catenation condensation” effect. These results are used to show that condensation of long
entangled polymers along their length, so as to increase excluded volume while decreasing number of statis-
tical segments, can drive disentanglement if a mechanism is present to permit topology change. For chromo-
somal DNA molecules, lengthwise condensation is therefore an effective means to bias topoisomerases to
eliminate catenations between replicated chromatids. The results for mean-square catenation are also used to
provide a simple approximate estimate for the “knotting length,” or number of segments required to have a
knot along a single circular polymer, explaining why the knotting length ranges from �300 for an ideal
random walk to 106 for a self-avoiding walk.
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I. INTRODUCTION

Topological constraints �“entanglements”� are key deter-
minants of physical properties of materials composed of
flexible polymers �1,2�. In biological systems, control of
polymer topology is a matter of life and death, particularly in
the case of double-stranded DNA �dsDNA�. The process of
DNA replication can be expected to leave a large number of
remnant links, or catenations between “sister” replicated
DNAs, given that initially the two parental strands start out
linked together once every 10.5 base pairs �3,4�. For a 4.7
�106 base pair �bp� E. coli bacterial chromosome, the pa-
rental strands are thus linked together roughly 4�105 times;
for the largest human chromosome containing �2.5
�108 bp, the parental strands initially are linked roughly 2
�107 times. Catenations remaining after DNA replication
must be removed by type-II topoisomerases �5� which pass
dsDNA through dsDNA, for sister chromosomal DNAs to
condense and segregate to the two daughter cells during cell
division.

This paper is concerned with the statistical mechanics of
two flexible polymer rings, each N statistical segments in
length, attached to one another by a short �roughly one sta-
tistical segment-long� tether �Fig. 1�a��. This situation is a
simple, well-defined model for duplicated chromosomes dur-
ing the late to terminal stages of DNA replication. Dupli-
cated chromosomes may be held together during the late
stages of DNA replication either by terminal regions of late-
replicating DNA, chromosome domain structure �4�, or by
specialized protein linkers �e.g., “cohesin” complexes �6��.
More generally, two circular polymers with a fixed distance
between specified points on each chain is a basic model for

analysis of random linking of polymers �7–14�. Tethering the
polymers together eliminates the divergence of the unlinked
state entropy with system volume and is appropriate for the
biophysical applications of interest here.

A. Distribution of Gaussian linking number
as a tool for quantifying linking complexity

The Gauss linking invariant of two closed curves r1 and
r2 is

Ca =
1

4�
� � dr1 � dr2 · �r1 − r2�

�r1 − r2�3
. �1�

Here this linking number is denoted Ca �catenation number�,
following molecular-biological notation for linking of two
double-helix DNAs �the notation Lk is conventionally used
to denote linking number of the two strands inside a double-
helix DNA�. The Gauss invariant can alternately be com-
puted as simply the sum of signed crossings of one curve
over the other. Ca is a topological invariant: its integer value
does not change if the linking topology of the two curves is
held fixed. Ca is easily calculated for piecewise smooth
curves or for polygons �15�, and its statistics are amenable to
analytical computation within the framework of flexible
polymer theory �7–14,16–23�.

For a single snapshot of two finite-length polymers, Ca is
a poor classifier of linking topology since it is highly degen-
erate �24�. Many topologically distinct linkages of two poly-
mers have the same value of Ca, so there is no hope of
uniquely identifying any link via Ca alone �25–27�. As an
important example of this degeneracy problem, the value
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Ca=0 taken by unlinked rings is also shared by all other
linkages that happen to have the same number of + and −
signed crossings. Therefore, observation that Ca=0 for some
particular configuration of two rings cannot be used by itself
to decide whether that configuration is unlinked. Further-
more, one cannot use Ca to detect linking changes during
numerical calculations of polymers where linking topology is
to be held fixed. In such calculations one must use topologi-
cal invariants with lower degeneracies �e.g., the two-variable
Alexander polynomial invariant for links �25,26,28�, or other
polynomial linking invariants� and with much higher calcu-
lational complexities than the Gauss invariant �see Ref.
�13��.

Despite the uselessness of Ca for precise classification of
the topology of individual polymer conformations, the prob-
ability distribution of Ca can be useful for characterizing
topologies in a statistical ensemble. The distribution of Ca is
particularly useful when one is not interested in precise clas-
sification or constraint of the linking topology of two poly-
mers, but instead in determining whether two polymers are
more or less entangled together under conditions where to-
pology is fluctuating �29�.

An example of such a problem is the threshold at which
substantial linking �or unlinking� begins to occur in an en-
semble of topologies, as a function of some control param-
eter �e.g., solution conditions, degree of cross-linking, activ-
ity of DNA-condensing enzymes�. For an ensemble with a
high degree of linking complexity, i.e., with a large mean
minimal crossing number, the distribution of Ca can be ex-
pected to be broad, even though the average and mode of the
distribution may be small or zero �for achiral polymers,
�Ca	=0 by symmetry�. Conversely, for an ensemble with a
low degree of linking complexity, one can expect a small
average Ca and also a narrow distribution of Ca. The prob-
ability distribution of Gaussian linking P�Ca� is in this way
useful for characterizing the linking complexity of an en-
semble of conformational states.

In this paper the second moment of P�Ca�, the mean-
square catenation number �Ca2	, will be given special atten-
tion since when �Ca	 and �Ca2	 are both near zero for an
ensemble of randomly linked polymers, that ensemble must

have a low average linking complexity. In the limit that both
the average and mean-square catenation are zero, the en-
semble must be unlinked, discounting the possibility that
only nontrivially linked states with zero Gauss invariant are
being visited during random fluctuations in topology. While
logically possible, this would be quite unphysical since a
single passage involving segments on different chains
changes Ca by �1. Fluctuations in topology generated by
local passages of polymer segments through one another as
is the case for any physically realizable situation �e.g.,
type-II topoisomerases acting on DNA molecules� cannot
keep Ca fixed at any one value. In any physical situation one
expects to observe a “random walk” of Ca values in time.

B. Outline of this paper

Section II discusses the degree of mean-square Gaussian
linking for two tethered polymer rings for achiral polymers
of random topology. Section II A discusses a simple scaling
argument indicating that for ideal random walks �IRWs�,
�Ca2	�N1/2, a result first obtained by Tanaka for Gaussian
polymers using a gauge field theory approach �7�. Section
II B shows how Tanaka’s result can be extracted from a di-
rect calculation of mean-square Gauss invariant for Gaussian
polymers due to Otto �14�.

Section II C shows how the case of self-avoiding walks
�SAWs� is quite different, presenting a scaling argument sug-
gesting that �Ca2	� ln N. This qualitative change in topology
complexity is a far stronger effect than the small change in
coil geometry �i.e., coil radius exponent �� resulting from
introduction of self-avoidance.

Section II D presents Monte Carlo �MC� results for a flex-
ible polymer model, for increasing levels of segment-
segment excluded volume �self-avoidance�. For IRWs there
is excellent agreement with the result of Sec. II B, but for
even small amounts of segment excluded volume �thin seg-
ments�, the logarithmic scaling behavior of Sec. II C is seen.

Section III discusses the implications of the results of Sec.
II for the free-energy cost of entanglements. For IRWs, a
scaling argument indicates that for large Ca, the free energy
should scale as 
�Ca /N1/4�4/3. For SAWs, the small magni-
tude of catenation fluctuations translates into a sufficiently
large free-energy cost of catenation that in almost all physi-
cally realizable situations, catenations should “condense”
together, leading to a novel, nearly linear increase in free
energy with catenation �30�, rather than the quadratic depen-
dence expected from conventional elasticity. In accord with
this, a numerical computation of free energy beyond the ther-
mal regime and into the heavily linked regime reveals a lin-
ear dependence on linking number, with dF /dCa�3.7kBT
over a wide range of Ca.

Section IV examines how the free energy of catenation
can play a role in driving disentanglement of the catenated
DNAs which are an intermediate product of DNA replica-
tion. A simple kinetic model is introduced to study relaxation
of catenation by random stand passages, providing a crude
model of the effect of type-II topoisomerases �5�. The result
is that thermal forces can be expected to suppress catenation
to the level of a link per roughly 100 persistence lengths for
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(b)

FIG. 1. �a� Tethered polymer rings. Two flexible polymers each
N segments in length are attached by a connector segment. �b�
Polymers undergo close encounters where two segments are sepa-
rated by approximately one segment length. At these points the sign
of the crossing may be changed by a small shift in position of either
segment, without changing the conformation of the remainder of the
chains.

JOHN F. MARKO PHYSICAL REVIEW E 79, 051905 �2009�

051905-2



moderate levels of segment excluded volume interaction, if a
mechanism to allow strand exchange �topoisomerases� is
available. This effect is then used to show that condensation
of entangled polymers along their length, so as to thicken
and stiffen them, is alone sufficient to drive their mutual and
self-disentanglement, in times comparable to those observed
in vivo for prokaryote and eukaryote cells.

In Sec. V the results of Sec. II are used to make an ap-
proximate estimate of the “knotting length,” or number of
segments N0 of topology-annealed ring polymer required to
have an appreciable �near 50%� probability of knotting. For
IRWs, N0�300 �31,32�. The knotting length rapidly in-
creases with excluded volume; for cylindrical segments of
diameter-to-length ratio of 0.2, N0�2�104 �32�, and for
segments which are about as thick as they are long, N0
�106 �31�. This dramatic increase in N0 with segment thick-
ness can be understood in terms of the quenching effect of
excluded volume interactions on catenation of Sec. II, based
on the idea that simple toroidal knots which appear at the
onset of random knotting can be thought of as reconnections
at near encounters of catenated rings.

II. MEAN-SQUARE CATENATION OF TWO
TETHERED POLYMER RINGS

Consider two flexible polymer rings, each N segments in
length, tethered together at one point along their length by a
connector of length 0.3 times the polymer segment length
�Fig. 1�a��. This section focuses on calculating the mean-
square value of Gauss linking number for freely fluctuating
topology, �Ca2	0 �the subscript 0 will refer to averages with-
out constraint of topology�.

A. Scaling for ideal random walk: ŠCa2
‹0ÊN1Õ2

Rings made of segments that have zero thickness, i.e.,
without excluded volume interactions, have statistics of ideal
�non-self- and-mutually-avoiding� random walks �IRW�, or
at large scales, Gaussian polymers. The average radius of
each chain is R�N1/2 �the RW step length is taken to be
unity�. To estimate Ca, one must consider the number and
signs of crossings of one polymer over the other in a given
projection. There are two distinct types of crossings of seg-
ments: “distant” crossings where the segments are separated
in the projection direction by more than a segment length
and “near” crossings where the segments involved are a seg-
ment length or less from one another.

The number of near crossings may be estimated using the
segment concentration in each coil c�N /R3�1 /N1/2, indi-
cating that the number of times two segments are closer than
a segment length from one another is cN�N1/2. These close
encounters each contribute �1 to Ca, since small rearrange-
ments of the chain geometry which do not cost appreciable
entropy can flip the sign contributed by each of them �Fig.
1�b��. Since all possible signs of these crossings occur with
equal probability in the ensemble, the near crossings contrib-
ute �N1/2 to �Ca2	0.

There are many more distant crossings. Projection of the
polymer into the plane gives c2d�N /R2�1, and c2dN�N

distant crossings, suggesting that they should overwhelm the
near-crossing contribution. However, almost all of the con-
tributions from distant crossings exactly cancel out, since
they alternate in sign as one chain crosses back and forth
over the other.

There will be a slow buildup of contributions from the
distant crossings, from distant “wrapping” of one chain
around the other, i.e., correlated-sign distant crossings sepa-
rated by sufficient chain contour for the chains to exchange
their order in the projection direction, without near crossings.
Near the tether point �monomer number n�0�, these ex-
changes occur relatively frequently but as n increases, they
become rarer; their rate with n scales �1 /n. Since these
nonlocal wraps occur with random signs, their contribution
to �Ca2	0 is ��1

Ndn /n=ln N �30�. Therefore for IRWs the
dominant contribution to random catenation is from near
crossings, with �Ca2	0�N1/2 for large N �33�.

B. Gaussian polymer calculation of ŠCa2
‹0

The result �Ca2	0�N1/2 was first obtained by Tanaka �7�
in a computation where the Gauss invariant was expressed as
an interaction of two polymers mediated by a gauge field.
The same result may be extracted from Otto’s direct compu-
tation of �Ca2	0 for two circular Gaussian polymers con-
strained to have two points along their contours separated by
displacement r �14�,

�Ca2	0 =
1

Z
� Dr1� Dr2�3�r1�N� − r1�0��

��3�r2�N� − r2�0���3�r1�0� − r2�0� − r�

� 1

4�
� � dr1 � dr2 · �r1 − r2�

�r1 − r2�3 �2

�exp− �
j=1,2

3

2
�

0

N

dni� dri

dni
�2� , �2�

where Z is the partition function of the polymer rings,

Z =� Dr1� Dr2�3�r1�N� − r1�0���3�r2�N� − r2�0��

��3�r1�0� − r2�0� − r�exp− �
j=1,2

3

2
�

0

N

dni� dri

dni
�2� ,

�3�

and where the polymer segment length has been taken to be
unity. Otto’s calculation leads to Eq. 25 of Ref. �14�,

�Ca2	0 = − 8� d3q

�2��3� d3u

�2��3

q · �u − q�
q2�u − q�2

eiu·r

u4 �1 − e−Nu2/6�2,

�4�

where terms generating subleading contributions in N have
been dropped.

Being based on a continuum model, this result requires a
short-distance �large-�q� and �u�� cutoff. This amounts to put-
ting an upper limit on the magnitudes of the integration vari-
ables, u�	� and q�	�. The order-unity constant 	 can
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be determined by comparison with numerical data for a spe-
cific polymer model.

The angular parts of the three-dimensional integrals may
be computed exactly

�Ca2	0 =
1

2�4� du

u3 �1 − e−Nu2/6�2sin�ur�
ur

�� dqq2

x
+

1 − x2

x2 ln�1 − x

1 + x
�� , �5�

where x=q /u. Then, changing the inner integration variable
to x gives

�Ca2	0 =
1

2�4�
0

	� du

u

sin�ur�
ur

�1 − e−Nu2/6�2

��
0

	�/u

dx2 +
1 − x2

x
ln�1 − x

1 + x
�� . �6�

The lower limits on the integrals may be set to zero as the
integrands are finite near x=0 and u=0. Equation �6� may be
simply numerically computed �smooth curve through circles
in Fig. 2�.

The asymptotic behavior of this integral for large N and
r�1 can be demonstrated to be �N1/2 as follows. The only
source of divergence is the rescaled cutoff of the inner inte-
gral; the integrand goes to a finite limit �the square bracket
approaches 4 for x�1�, so the inner integral contributes
4�	 /u+O�1�, considered as an expansion in u. This leads to

�Ca2	0 =
1

2�4�
0

	� du

u

sin�ur�
ur

�1 − e−Nu2/6�24�	

u
+ O�1�� .

�7�

Defining a rescaled integration variable x2=Nu2 /3,

�Ca2	0 =
2	�N/3�1/2

�3 �
0

	��N/3�1/2 dx

x2

sin px

px
�1 − e−x2/2�2,

�8�

where p=r / �N /3�1/2 and where O�1� corrections to the lead-
ing N1/2 scaling are omitted. For r�1 and N
1 �the case of
interest here� the p→0 limit may be taken, and the integral
upper limit may be taken to infinity, to extract the leading
N-scaling:

�Ca2	0 =
2	

�3�3
N1/2�

0

� dx

x2 �1 − e−x2/2�2 =
2��2 − 1�
�3�5/2 	N1/2.

�9�

Note that the O�1� numerical prefactor in the final result
�multiplying 	N1/2� is 0.02734¯, substantially smaller than
unity. The original calculation by Tanaka �7� obtains a quite
similar numerical constant �3 / �4��2=0.01899¯� multiply-
ing a O�1� cutoff constant, suggesting that a numerically
small prefactor is intrinsic to this scaling law.

C. Scaling for self-avoiding random walk: ŠCa2
‹0Ê ln N

In the presence of segment-segment excluded volume in-
teractions, the near-crossing estimate of Sec. II A breaks
down due to correlations between segment positions. Re-
markably, for a self-avoiding polymer of 2N segments, sites
on the two N-segment-long halves of the polymer collide
only a finite number of times, even for N→� �34�. Therefore
for two tethered N-segment rings near crossings contribute
only O�1� to �Ca2	.

Thus, for SAWs, �Ca2	0 is determined by the distant
crossings. As in Sec. II A, almost all of the contribution to
Ca of distant crossings cancels out, but there is still the
�ln N contribution from random wrapping of one polymer
around the other �the polymer statistics do not affect the
requirement of n segments to form the next wrap a contour
distance of n from the tether point �30��. The result for two
tethered SAW rings is thus

�Ca2	0 � ln N . �10�

D. Numerical calculations of ŠCa2
‹0

The results outlined above require validation given that
they involve approximations. Given the lack of exact solu-
tions, a numerical approach is indicated. In this subsection
the results of Secs. II B and II C are checked using MC cal-
culations.

1. Monte Carlo method

MC calculations were done for an athermal hard cylinder
model, with small fluctuations in segment lengths as de-

(b)(a)

FIG. 2. �a� Monte Carlo �MC� simulation results for mean-
square catenation �Ca2	 of tethered rings compared with analytical
and scaling formulas. Circles show results for ideal random walks
�IRW, segment diameter d=0�; for N�500 the results converge to
�N1/2 �straight line�. The smooth curve through the data points is
the result of an exact calculation for the Gaussian polymer model
�see text�, which passes through all the MC data. Squares indicate
self-avoiding walk �SAW� results obtained by increasing the seg-
ment diameter to d=0.2; the magnitude of �Ca	 is strongly sup-
pressed, and follows a logarithmic behavior �smooth curve through
the data is a ln N+b, see text�. Intermediate values of segment
diameter �d=0.01, +; d=0.05, �� give results where IRW-like
��N1/2� behavior is seen for small N, but which for larger N gives
way to a slowdown toward SAW ��ln N� behavior. �b� Same data
as in �a�, plotted on linear-log scale, showing that for nonzero ex-
cluded volume �d=0.01, +; 0.05, �; 0.2, �� mean-square catena-
tion grows logarithmically with N.
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scribed below. MC moves were of two types, vertex and
reversal moves. Vertex moves were random displacements of
randomly chosen vertices along the simulated polymer,
where vertex displacement was distributed randomly over a
ball of radius 0.35. Vertex moves were rejected if they
caused either collisions of segments, or if they caused the
length of any segment to be outside of the range 0.9 to 1.1.
The connector segment between two �fixed� vertices was
treated as a segment whose length was allowed to fluctuate
between 0.27 and 0.33.

Reversal moves amount to choosing two random points
along either polymer ring and then reversing the order of
segments along that region of the ring. Such moves were
rejected if they caused segment overlaps.

The vertex moves lead to small-scale randomization of
chain configurations and are computationally inexpensive.
The reversals, while somewhat more costly computationally,
provide rapid equilibration of the polymer configurations on
large scales and also provide a mechanism for topology
change in the presence of self-avoidance suitable for calcu-
lation of equilibrium averages.

Calculations were carried out by alternating between se-
ries of vertex and reversal moves. 100 vertex moves per
vertex were done, followed by one reversal move. After each
reversal move, Gauss invariant was computed using the
method discussed in Ref. �15�. Between 8 and 12 long simu-
lations were run for each choice of segment diameter and
ring length. Standard errors were calculated from the stan-
dard deviation of measured quantities among these separate
runs. Between 108 and 109 vertex moves, with between 106

and 107 reversals moves per vertex were used for each �d ,N�
case studied.

2. Results

Calculations for the mean-square linking number of two
tethered rings each of N segments and of zero thickness �i.e.,
ring IRWs� are shown in Fig. 2, circles. Note that �Ca2	0
substantially exceeds unity only for N�102. For N�500,
�Ca2	0→a0N1/2 with prefactor a0=0.23�0.01, with appre-
ciable negative corrections to the asymptotic power law for
N�500. The dashed line shows a pure N1/2 law.

The solid curve is the analytical result for a Gaussian
polymer, Eq. �5�. Setting the cutoff parameter 	=8.5 gives
close quantitative agreement with MC data from N=20 to
N�2000 �Fig. 2, upper curve�. The value of 	=8.5 used to
describe the MC data is reasonable since one must have
wavelengths somewhat less then the segment length resolved
to take account of the connector length �0.3 segments in
length� as well as the fluctuations in segment length ��0.1
segments�.

If the polymer segments are made to be cylinders of di-
ameter d�0 and are constrained to not overlap one another,
the rings become self- and mutually avoiding. As d increases
from zero to order unity, segment-segment excluded volume
is increased. As shown in Fig. 2, increase in d from zero
strongly suppresses �Ca	0 for any given ring length N. This
suppression is not just a change in the prefactor or a small
shift in exponent of the power law, but is a qualitative change
in the scaling of catenation with ring length.

MC calculations for segments with d=0.2 �Fig. 2,
squares� are in good accord with the expected logarithmic
behavior with �Ca2	0=a ln N+b, a=0.095�0.002, and b
=−0.24�0.01. Note that for the largest rings studied, each
N=2560 segments, �Ca2	0 only reaches �0.5; the logarith-
mic increase means that �Ca	0 reaches unity only for N
�106. Self-avoidance tremendously suppresses random cat-
enation of two tethered rings.

Figure 2 also shows the variation in �Ca2	0 with N for two
intermediate values of d, 0.01 �+� and 0.05 ���. Even for
these rather small degrees of segment avoidance there is
strong suppression of linking and a leveling off of �Ca2	0
toward the logarithmic behavior seen for d=0.2. The curves
drawn through these points in Fig. 2 are linear fits of the
same form as those for the d=0.2 case. For d=0.05���, a
=0.25�0.01 and b=−0.47�0.03; for d=0.01�+�, a
=0.98�0.05 and b=−3.3�0.5.

While one might be tempted to construct a one-parameter
scaling function description of the crossover of �Ca2	0 from
the power-law IRW case to the logarithmic SAW case, it
should be noted that one-parameter scaling has long been
known to be inapplicable even to simple geometrical prop-
erties of the self-avoiding walk �35�.

III. FREE ENERGY OF CATENATION

Given the fluctuation �Ca2	0 of Sec. II, one is led to sup-
pose that the free-energy cost of constraining catenation of
two tethered ring polymers should display a quadratic Ca
dependence near Ca=0 �14�:

F�Ca� =
c

2
Ca2, �11�

where c is a dimensionless effective “Gauss invariant rigid-
ity,” and where = �kBT�−1. This expression is reminiscen
t of the small-deformation limit for the twist deformation
energy of a uniform elastic filament. Recall that in that case
one would expect c�1 /N �the standard definition of twist
elastic constant for an elastic filament would be C
= �kBTNb / �4�2��c�kBTb, indicating the c�1 /N scaling
�36��.

If free energy �11� held with no anharmonic corrections,
then as long as c�1, one would have c=1 / �Ca2	0. However,
this “equipartition” relation depends on the form of the free
energy for Ca� ��Ca2	0�1/2. Furthermore, simply from the
quantization of Ca there will be a threshold value of N re-
quired for the quadratic behavior �11� to be observable.

A. Ideal random walk polymers

1. Scaling analysis

For IRWs, �Ca2	0=a0N1/2 for N
1. The lack of segment-
segment correlations indicates that the probability distribu-
tion for Ca must be a function of only Ca2 / ��Ca2	0�; the only
scale for Ca2 is its average value. Therefore

− ln
P�Ca�
P�0�

= F�Ca� = f�Ca/�Ca2	0
1/2� , �12�

where f�x� is an even function. Note that the free energy of
the Ca=0 state is taken to be zero.
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For large N, �Ca2	0=a0N1/2. Given f�x�=kx2 /2 for x�1
�sign-reversal symmetry of Ca� one has, for sufficiently large
N and sufficiently small Ca,

F�Ca� =
kCa2

2�Ca2	0
=

kCa2

2a0N1/2 , �Ca� � �Ca2	0
1/2 = a0

1/2N1/4,

�13�

where the N dependences hold for the N→� limit.
The rigidity of Eq. �11� is c=k / �Ca2	0 or for large N, c

=k / �a0N1/2�, which is a peculiar nonextensive form. The
analogous twist rigidity of an elastic rod of length �N would
scale as c�1 /N �36�, giving an extensive free energy. In
contrast, the effective rigidity associated with the Gauss in-
variant decays more slowly: c�1 /N1/2. Conversion of this to
a conventional filament elastic constant yields C�Nc�N1/2,
divergent with N.

One can estimate how large N is required for the quadratic
variation of free energy �11� to be observed. Given the a0
�0.23 determined in Sec. II, quadratic dependence of the
free energy on Ca can be expected for �Ca��0.48N1/4. Since
Ca is quantized, one requires 0.48N1/4�2 �giving at least
three values of Ca to fit a quadratic dependence to�. There-
fore quite long polymers, with N�300, are required for the
quadratic behavior �11� to be observable.

In the strong-catenation regime �Ca�� �Ca2	0
1/2�N1/4, one

may estimate the form of the free energy by supposing that
the polymers organize into correlation regions, each contain-
ing n segments. With each correlation region there is associ-
ated free energy �kBT and a contribution to catenation c
�n1/4. Adding up the contributions from each correlation
region �biased to have the same sign contribution to Ca�
gives �Ca�=Nc /n=N /n3/4, giving n= �N /Ca�4/3, and

F�Ca� = k�� Ca

N1/4�4/3
, �Ca� � �Ca2	0

1/2 = a0
1/2N1/4 �14�

for some O�1� constant k�. This result is in accord with the
scaling hypothesis �12�. When Ca�N, F�N, since the
forcing of the two chains to tightly associate quenches O�N�
degrees of freedom.

The structure of the �Ca��N1/4 coil is a random walk of
correlation regions each of size ��n1/2, giving an overall
coil size for the polymers of R��N /n�1/2��N1/2. The topo-
logical constraint �Ca��N1/4 does not change the coil size at
the level of scaling, i.e., by more than an O�1� factor.

Nonlocal contributions to Ca from the �N /n�1/2 collisions
between distant correlation regions may be neglected. Each
such collision generates �n1/2 near encounters of segments,
giving a total of N1/2 nonlocal near encounters of segments
along the polymers. These random-sign contributions to �Ca�
are �N1/4 and therefore may be neglected in the strong cat-
enation regime where �Ca��N1/4; the two polymers may be
considered to be locally entangled with one another along
their lengths.

2. Monte Carlo calculation results

Figure 3 shows the free energy of catenation computed
from the probability distribution of catenation using the
Monte Carlo calculations of Sec. II D. Data are plotted ver-

sus catenation in units of the root-mean-squared catenation
�x�Ca / ��Ca	0

2�1/2�, the scaling variable of Eq. �12�. All the
data, for polymers with N=20 to N=2560, collapse onto one
curve, supporting the scaling hypothesis �12�. For x�1, the
data are consistent with f�x��kx2 /2 dependence �lower
straight line in Fig. 3�, with k=3.4�0.3. For x�1, the data
are well described by f�x�
x4/3, in accord with scaling result
�14�.

B. Polymers with excluded volume interactions

If the polymers have excluded volume interactions, there
are correlations in positions of segments and in catenation
fluctuations along the chain. Fluctuations in Ca are much
smaller, with �Ca2	0�a ln N+b growing very slowly with N.
The initial quadratic dependence of free energy �11� must
have a very large effective elastic constant, c�1 / �a ln N
+b�. This decays with N far more slowly than in the ideal
random walk case.

A consequence of this large effective stiffness is that the
free energy added per catenation dF /dCa approaches kBT for
catenation numbers of Ca�1 /c��Ca2	0�a ln N+b. Be-
yond this value of Ca one cannot expect to observe quadratic
low-catenation free-energy behavior. To obtain �Ca2	0�1 for
d=0.2 one needs N�e�1−b�/a=e1.24/0.095�4�105. For d
=0.2 it is therefore unlikely that any conceivable computa-
tion �or experiment� could have large enough N for quadratic
free-energy dependence on Ca to be observed.

There is certainly no range of Ca for the d=0.2 case
where quadratic free-energy behavior will be observable in
the numerical calculations of this paper. Referring to Fig. 2 it
is apparent that for d=0.2 catenation does not reach unity for
even the largest polymers studied here �N=2560, �Ca2	0
�0.6�.

Another way to look at the small-catenation free energy is
to note that it has a very large stiffness. If one did have
sufficiently long polymers to observe the quadratic free-

FIG. 3. Catenation free energy for tethered ideal random walks.
Data are shown for N=20, 40, 80, 160, 320, 640, 1280, and 2560, in
terms of the scaled catenation x=Ca / �Ca2	0

1/2. Data for all lengths
collapse onto a single curve; for x�1 the free-energy increase is
consistent with a x2 law �line, lower left�; for x�1 the free-energy
increase slows down and is consistent with �x4/3 �line, upper right�.
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energy regime, the effective elastic constant would behave as
c�1 / �ln N�, or in elastic filament terms, a very divergent
C�N / ln N.

In the numerical calculations of Sec. II, for the case d
=0.2, the large free-energy cost of catenation resulted in only
a few values of Ca being observed, essentially between �4.
Minus one times the logarithm of the probability of each
catenation case is the free energy of catenation, and this is
plotted in Fig. 4�a� for N=20, 40, 80, 160, 320, 640, 1280,
and 2560 �free energies are given relative to the Ca=0 state�.
As N increases, the free energy comes down only slowly
with N, e.g., much slower than 1 /N or even 1 /N1/2.

For large N and small Ca one expects scaling behavior
F�Ca,N�� f�Ca / �Ca2	0

1/2� where f is an N-independent dis-
tribution, for consistency of the catenation probability distri-
bution with its second moment �Ca2	0.

Figure 4�b� shows how the set of free energies for the case
d=0.2, when multiplied by �Ca2	0

1/2�a ln N+b vary as a
function of N. For large N, the free energies scaled in this
way are nearly constant. Therefore, for N�102 and �104

and �Ca��4 one has

F�Ca� =
g��Ca��
�Ca2	0

1/2 , �15�

where g��Ca�� is an N-independent function of Ca. Figure
4�b� indicates that for Ca�0, g��Ca���A�Ca�+B where A
=1.8�0.2 and B�−0.8�0.1, approximately linear in �Ca�
�note g�Ca=0�=0�.

Free energy for larger Ca

Figure 4�b� hints that the free energy will grow nearly
linearly for larger Ca; the data for N�320 suggest a nearly
linear increase in free energy for Ca�2, with dF /dCa�4.
This cannot be convincingly demonstrated by calculations
with freely fluctuating topology �Fig. 4�a��, simply because
the probabilities of large-Ca states are prohibitively small.

In order to study the behavior of the free energy for larger
Ca, MC calculations were done with the term �E=−�Ca
added to the microscopic energy. The field � biases the en-
semble to have nonzero average Ca and can be thought of as
a kind of torque, but driving Gauss invariant rather than
simple toroidal catenation �if one were concerned with think-
ing about the work done per radian of Gauss invariant the
analogous “torque” one should use is kBT� / �2���. By carry-
ing out a series of calculations at different values of Ca one
can obtain the relative free energies over a few different
ranges of Ca �note F�Ca��−F�Ca�=ln�P�Ca� / P�Ca���
+��Ca�−Ca�, where the P are obtained from calculations
with nonzero ��. The results for different � can then be com-
bined together to compute F�Ca� over a wide range of Ca.

Figure 5�a� shows results of this type of calculation, for
the case N=640, chosen to be large enough to be out of the
regime where there is strong variation in free energy with N
�see Fig. 4�a�� but where the calculations are still computa-
tionally tractable. Several calculations of roughly 108 vertex
moves and 106 reversal moves were carried out for each of
�=1, 2, 3, 3.5, 3.6, and 3.75. In each run roughly half the
total time was used to reach equilibrium, while the remaining
time was used to obtain the catenation distributions. Figure
5�a� shows the total free energy as a function of Ca; except
for a small “foot” near Ca=0, the free energy is nearly linear
in Ca. The results for Ca�4 are in accord with the �=0
results of Fig. 4.

The linear behavior is strikingly apparent in Fig. 5�b�
which shows the “equation of state” dF /dCa= ��	 versus

(b)(a)

FIG. 4. �a� Catenation free energy versus Ca for tethered poly-
mers with self-avoidance �d=0.2� in the small-Ca regime, obtained
from unbiased Ca fluctuations ��=0�. Data are shown for N=20
���, 40 �*�, 80 ���, 160 ���, 320 ���, 640 ���, 1280 �+�, and 2560
���. As N increases, the free energies for given Ca go down, but
only slowly. �b� Free energies of �a�, multiplied by ��Ca2	0�1/2

�0.095 ln N−0.24, for �Ca�=1 ���, 2 ���, 3 ���, and 4 ���. For
N�100, the scaled free energies are nearly constant, indicating that
for N up to �3000, F�g�Ca� / ��Ca2	�1/2, where g�Ca� is an
N-independent constant.

(b)(a)

(c)

FIG. 5. �Color online� Free energy of catenation over wide
range of Ca obtained from biased-Ca computations ���0�. �a� Free
energy obtained from computations with �=1, 2, 3, 3.5, 3.6, and
3.75, for N=640. After an initial sublinear increase from zero,
F�Ca� grows nearly linearly with Ca. �b� Free-energy change per
added catenation �dF /dCa� versus catenation density �Ca /N�. Re-
sults for N=160 �*� and N=640 ��� rapidly jump to near 3.7kBT
per added catenation. The lack of N dependence indicates that the
free energy is dominated by local effects, i.e., by formation of a
tightly entangled state. �c� Sample configuration of N=640 chains
with �=3.5, showing separated disentangled and entangled
domains.
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catenation density Ca /N. The free energy per successive
added catenation for N=640��� rapidly increases and then is
nearly constant at approximately 3.7kBT per added catena-
tion. The plateau behavior of dF /dCa is nearly independent
of N; Fig. 5�b� also shows results for N=160��� which are
nearly the same as those for N=640.

The linear dependence of F on Ca in the regime where
�dF /dCa��kBT suggests that “catenation phase separation”
is occurring �30�. In this regime spreading of entanglements
along the chains can become thermodynamically less favor-
able than condensation of catenations together into a local-
ized tangle. Once a localized entangled structure forms, ad-
ditional catenations will simply add polymer length to it.
This can be thought of as phase separation of catenation, or
formation of catenation-dense and catenation-free “phases.”
In the entanglement condensation regime each additional cat-
enation converts an additional bit of polymer into conden-
sate, giving a free energy that grows linearly with Ca �30�.

Supporting this condensation picture are results for the
N=640 calculation with �=4; this value of Gauss invariant
torque generates a large buildup of Ca �data not shown�,
indicating that �=4 is above the free energy per catenation
associated with the condensate. Figure 5�c� shows a sample
configuration for two N=640 rings with �=3.5; regions of
densely entangled and relatively free chain can be observed.

This catenation condensation effect is not a true phase
transition for any finite N, hence the slight slope on the pla-
teaus of Fig. 5�c�, with more slope in the smaller-N case.
However, in the N→� limit Fig. 5�c� will become a flat
plateau with dF /dCa�3.7. The onset of condensation will
occur for Ca� ln N, or for Ca /N�N−1 ln N→0 as N→�
�30�. For Ca /N�0.1 the plateau will end at an abrupt upturn
in dF /dCa, corresponding the formation of the fully
catenation-condensed state.

IV. RELEASE OF CATENATIONS BY RANDOM
SEGMENT EXCHANGES

The free-energy cost of catenation of Sec. III generates a
thermodynamic driving force that can guide removal of link-
ing between replicated DNA molecules by topoisomerases
�enzymes which permit DNA to pass through itself� �37�. In
principle, given sufficient time, thermal forces will guide Ca
to ���Ca2	0�1/2, or to Ca��a ln N+b�1/2 for long and iso-
lated self-avoiding polymers. For naked DNA �segment
length 100 nm containing 300 bp, thickness including elec-
trostatic effects is 5 nm, corresponding to d=0.05, Fig. 2, ��
�Ca2	 does not pass unity until roughly N=200, or 60 kb.
Thus even without supercoiling, action of proteins, or con-
finement effects, �Ca2	 for large DNA plasmids or chromo-
somal loops will eventually drop to near zero simply via
thermodynamic forces, if they are able to reach isolated-coil
thermal equilibrium. However, the kinetics of this topologi-
cal equilibration process is unclear. Below it will be shown
that there is an initial rapid catenation removal regime for
�Ca��0.03N where the dynamics is essentially local �N in-
dependent�; thermal removal of Ca below this level will pro-
ceed more slowly due to strong thermal fluctuation effects.

A. Kinetics of catenation release

To estimate the time required for random thermalization
of catenation topology, numerical simulations were carried
out, using the Monte Carlo approach discussed above with
two changes. First, only local vertex moves were used,
which in the presence of excluded volume interactions pre-
serve polymer topology and provide diffusive, Rouse-type
dynamics. Given the step size and unit segment length, the
unit of real time corresponding to one move per vertex can
be considered to be �=�b3 / �kBT�, where b is the segment
length and � is the viscosity. For naked DNA where b
=100 nm and �=10−3 Pa sec, ��3�10−4 s. For either
bacterial or eukaryote chromatin where b�60 nm, one has a
somewhat shorter time scale of ��5�10−5 s.

Second, a topoisomerase-like mechanism was introduced
to permit strand passage events as follows. When a vertex
move was found to lead to overlap of two segments, it was
permitted, with probability poverlap=0.01. Thus one in every
1 / poverlap=100 collisions involving only two segments was
allowed to form an overlap. Then, for subsequent vertex
moves, the collision was allowed to persist until the two
segments involved no longer were overlapped. This proce-
dure permitted random strand passages to occur via a local,
topoisomerase-like mechanism, providing a pathway for to-
pology changes, with �Ca= �1. The value of poverlap can be
thought of as corresponding to the presence of one topoi-
somerase per 1 / poverlap DNA segments; in vivo there is
thought to be roughly one type-II topoisomerase per few
kilobases of DNA, comparable to the choice of p.

Calculations were carried out where two ring polymers
each of N segments with d=0.2 were initially catenated to-
gether to have Ca /N=0.16, as simple toroidal links �i.e., the
two polymers were initially wound around one another
0.16N times�. This initially entangled state was allowed to
thermalize for �107 steps per vertex, in the absence of
topology-changing moves. Then, topology-changing moves
were allowed to occur and Ca was recorded as a function of
time steps per vertex. Four independent simulation runs were
carried out for each of N=122, 152, 302, 452, and 602 seg-
ments.

Results for the time evolution of Ca averaged over the
four runs as a function of time steps per vertex are shown in
Fig. 6�a�. For the range of lengths studied, there is rapid
removal of Ca during the time range 103 and 3�104 time
steps; beyond 3�104 time steps there is a marked slowdown
in removal of Ca as thermal fluctuations start to establish the
equilibrium topology distribution.

Over the whole time course, different realizations yield
similar results. Figure 6�b� shows the time course of the
mean-squared catenation �Ca2	1/2 averaged over four runs.
The square root of this average is plotted to allow easy com-
parison of Figs. 6�a� and 6�b�; the two plots are nearly the
same over the rapid removal time regime �time �3�104�
indicating that Ca follows essentially the same time course in
the different runs. Differences between the runs only start to
be noticeable in the fluctuation regime �time �3�104 steps�
where the catenation number is approaching order unity.

Section III showed that for self-avoiding polymers the
free energy grows linearly with Ca, indicating the free-
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energy density is linear in catenation density. This suggests
that at least the rapid-removal regime should be governed by
local kinetics, i.e., catenation density should be an
N-independent function of time. If the data of Fig. 6�a� are
plotted in terms of catenation density Ca /N �Fig. 6�c��, the
trajectories do indeed closely overlap during the rapid re-
moval regime �for times up to 3�104 steps�, indicating that
the catenation removal dynamics are essentially local. There
is a lag phase of roughly 103 time steps due to the low
probability of segment exchanges occurring per collision �re-
call the probability for forming an overlap of 10−2�, and then
between times of 5�103 and 3�104 catenations disappear
at a roughly power law rate 
1 / t. At the end of the rapid
removal regime, catenation density is reduced to Ca /N
�0.03.

These results show that a total time of 3�104 time steps
per vertex reduces catenation density to near Ca /N=0.03 for
polymer rings of up to N=600 segments, with moderate ex-
cluded volume �d=0.2�. The time scale of 104 steps is physi-
cally plausible, given the Rouse relaxation time of a 100-
segment region �104 time steps.

The behavior during the rapid removal regime is not
highly sensitive to the segment diameter to length ratio. Fig-
ure 6�d� shows results for d=0.05, fourfold thinner segments
than those of Fig. 6�c�. A fourfold smaller vertex displace-
ment had to be used to eliminate topology changes by those
displacements; at the same time the acceptance rate of dis-
placements was higher. However, the overall dynamics dur-
ing the rapid removal regime are nearly the same as for d
=0.2, and terminate at roughly the same Ca /N�0.03. This
indicates that in the rapid removal regime it is mainly the
free energy of wrapping which is driving release of catena-
tion, which is only weakly dependent on the segment thick-
ness in the range d=0.05 to d=0.2. Once one is in the fluc-
tuation time regime �times �3�104�, the fluctuations are
larger for the smaller d=0.05 case than for d=0.2, again as
expected from the larger equilibrium value of �Ca2	.

While hydrodynamic interactions have not been used in
these dynamic calculations, their effect may well accelerate
relaxation of catenation since hydrodynamics leads to nonlo-
cal coupling of polymer modes. In a nuclear or cell interior,
it is quite unclear on what length scales hydrodynamics ap-
plies, and a local friction model may well be most appropri-
ate. Hydrodynamic effects will not alter the free-energy cost
of Ca.

B. Driving entanglements out of chromosomes
by lengthwise condensation

The suppression of �Ca2	0 with increasing excluded vol-
ume interaction �Fig. 2�, plus the efficient removal of catena-
tion down to levels of Ca /N=Ca /N�0.03 �Fig. 6�c�� ob-
served for d=0.2 indicate that an effective mechanism to
eliminate links between long DNA molecules in the presence
of topoisomerases can be based on lengthwise condensation
�38�. Lengthwise condensation of a polymer is quite different
from conventional polymer collapse �the coil-globule transi-
tion�; in the latter, an isolated polymer forms a dense globule
via indiscriminate two-body attractions. In contrast, during
lengthwise condensation, long-ranged cross-linking is as-
sumed to be absent; instead self-interactions of the polymer
are assumed to fold it up locally along its length �“in cis”�
without generating long-range �“in trans”� cross-links
�Fig. 7�.

As lengthwise-condensation proceeds, a polymer contin-
ues to act as a flexible self-avoiding polymer, but with values
of segment length b�, segment thickness d�, and total contour
length L�=N�b� which are different from the values b, d, and
L=Nb characteristic of the original polymer. In general one
can expect d��d and L��L as a result of lengthwise con-
densation; in addition one can expect b��b, so that N�
=L� /b� should be less than the original value of N=L /b. A
number of mechanisms could independently or in concert
generate lengthwise condensation of chromosomes in vivo,
including folding of DNA by bending and wrapping around
proteins �39�, short-range self-tethering of chromosomes, or
formation of plectonemically supercoiled domains as occurs
in many bacteria.

The case of protein-driven lengthwise condensation re-
quires that those proteins act along a single stretch of DNA,

(b)(a)

(c) (d)

FIG. 6. Time course of removal of catenation in MC simulations
with only local vertex diffusion, for various polymer lengths �leg-
end gives N values�. In all cases Ca /N=0.16 at t=0; at subsequent
times Ca can change as a result of intermittently allowed segment
overlaps. Each data set shows results averaged over four indepen-
dent runs. �a� �Ca	 as a function of time, for d=0.2. Catenations are
smoothly removed for t�3�104; at later times fluctuations begin
to dominate over free-energy-driven catenation reduction. �b�
�Ca2	1/2 as a function of time for the runs of �a�. In the smooth
relaxation regime the results are nearly the same as in �a� indicating
that there is very little variation from run to run. �c� Catenation
density �Ca	 of �a� and �b� as a function of time. In the smooth
removal regime t�3�104, the data collapse onto a single curve
terminating near Ca /N=0.03. The results indicate that the dynamics
in the smooth removal regime are dominated by local relaxation
processes. �d� Data for �Ca	 /N versus time for d=0.05 collapse for
times t�104.
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e.g., by wrapping or looping DNA, or by binding coopera-
tively along DNA so as to make a thick nucleoprotein fila-
ment. A familiar example of this is provided by eukaryote
chromosomal DNA, where every �6 kb of DNA is com-
pacted into �30 nucleosomes, which wrap into a 30-nm-
thick and 60-nm-long “segment.” This lowest level of eu-
karyote chromosome compaction accomplishes a roughly
30-fold length compaction from 3 bp/nm for naked DNA to
100 bp/nm for chromatin fiber.

To illustrate how lengthwise-compaction-driven entangle-
ment removal works, consider tethered polymer rings of N
segments, each of length b and diameter d. Suppose that
d /b=0.2; the results of Fig. 6 indicate that in the presence of
topoisomerases, catenation density will be reduced to Ca /N
�0.03 in roughly 3�104�. Now, suppose that condensation
along length gradually occurs via a process which increases
b and d both by a factor �, so b�=�b and d�=�d �one might
imagine the folding of a length b of DNA or chromatin into
a nucleoprotein complex of length b�, where there are flex-
ible “hinges” between successive complexes, see Fig. 7�. As-
suming that volume is conserved, the number of segments
contained in each polymer will be reduced to N�=N /�3; the
total contour length will vary as L�=N�b�=Nb /�2=L /�2,
giving a length compaction factor L /L�=�2.

According to the results shown in Fig. 6, at each stage of
this condensation process the linking density will be driven
to Ca /N��0.03; therefore the catenation number will be
driven to Ca�0.03N�=0.03N /�3. Catenation of the initially
linked polymers can therefore be eliminated by lengthwise
compaction with

�e � �0.03N�1/3 �16�

This factor compacts the original N-segment polymer to one
with about N�=N /�e

3=30 segments of length b�=�eb and
d�=�ed. The chromosome length compaction factor required
to eliminate entanglements is therefore L /L�= �0.03N�2/3.

For this mechanism to operate, stable long-ranged “cross-
linking” of arbitrary chromatin segments should be delayed
until after lengthwise condensation-driven entanglement-
resolution occurs. The above calculation may be generalized
to the case where the ratio b� /d� changes with condensation,
but without changes to the main results since one expects
b /d to remain comparable to unity during the time when one

can treat a chromosome as a flexible polymer with thermal-
ized topology, and given that the rapid decatenation dynam-
ics are not strongly b /d dependent �Fig. 6�.

1. Time scale for entanglement removal
by lengthwise condensation

Precise kinetic estimates require detailed knowledge of
the time course of �, or equivalently geometrical details of
folding intermediates. However, given the self-diffusion time
scale for a compacted segment of ��=�b�3 /kBT=�3�, where
� is the self-diffusion time for the original uncompacted seg-
ments, the time required for entanglement removal driven by
condensation factor �e may be roughly estimated to be Te
=104��=104�e

3�.
One might suppose lengthwise condensation by a total

factor � to occur via a series of intermediate stages, e.g., a
series of n steps each of compaction factor �, with �e=�n.
Summing over the time required for catenation equilibration
at each step yields a geometric series giving essentially the
same result for Te, i.e., dominated by its last term.

Given that the lengthwise condensation must have �
��0.03N�1/3 to ensure complete disentanglement for the case
b� /b=d� /d, the minimum time required for complete disen-
tanglement of a chromosome region of N statistical segments
by lengthwise condensation is

Te = 300N� . �17�

This time scales slower with N than does the relaxation time
of the original polymer which is at first glance paradoxical.
However, as lengthwise condensation proceeds internal con-
formational rearrangement modes are systematically elimi-
nated, drastically reducing the relaxation time of the whole
chain.

One may put an upper limit on the forces that must be
applied along the polymer to condense it in this minimum
time. Taking the worst case where the polymer is initially
entirely stretched out, the force needed to translate the entire
polymer along its entire length in time Te is at most f
���Nb�2 /Te��N /300��kBT /b� Given than b�100 nm for
DNA or chromatin, domains of up to N�104 segments may
undergo length condensation in time Te without exceeding
tensions of a few piconewtons �recall 1kBT /nm�4 pN at
300 K�. For a more realistic initial condition �e.g., an initial
folded or coiled conformation� the forces required can be
much lower than this worst-case estimate.

2. Bacterial chromosome segregation

An E. coli chromosome consists of DNA coated by DNA-
bending proteins including Fis and HU, which make the
4.7�106 bp correspond to N�104 �DNA-bending proteins
of this type tend to reduce the segment length from its naked-
DNA value of 100 nm containing 300 bp to a segment length
b�60 nm containing �500 bp �40,41��, with d /b�0.1.
Entanglements between replicated chromosomes �note that
before replication, the DNA strands start out with Ca
�400 000� must be removed before segregation can occur
�42�. Local compaction by protein-DNA interactions �e.g., by
proteins Fis, H-NS, or MukBEF�, and by plectonemic super-

b b’

d

d’

FIG. 7. Lengthwise condensation mechanism. A segment of
length b of polymer of thickness d is lengthwise-compacted into a
new segment of length b� and thickness d�. Successive segments
are connected by short flexible linkers of the original polymer. As
the segments become longer and thicker, entanglements are driven
out of the polymer, both with itself and with other nearby polymers
undergoing the same type of condensation.
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coiling generates lengthwise condensation and will promote
decatenation by type-II topoisomerases �in E. coli, topo IV
and DNA gyrase� according to the scheme outlined above.

Plugging N=104 into Eq. �16� indicates that �e�7 is suf-
ficient to drive complete decatenation of entire chromo-
somes. This corresponds to an increase in segment length
from b�30 nm to b��200 nm and a reduction in number
of segments to N��30. The �random polymer� size of the
bacterial chromosome at the end of this condensation-
segregation process will be �b�N�1/2=1100 nm, comparable
to the size of bacterial chromosomes inside the E. coli cell as
they spontaneously segregate from one another before the
cell itself divides.

The experimentally observed degree of condensation of
the E. coli chromosome in vivo during rapid growth is suffi-
cient to drive most if not all entanglements out of adjacent
chromatids. Intriguingly, there have been observations of es-
sentially fully condensed, and in some cases visibly circular
or twisted-circular chromosomes in E. coli, suggestive of
lengthwise condensation �43–45�. The observed organization
of the chromosome at large scales has been argued to be
consistent with packing of large condensed domains in the E.
coli cell interior �46�. That latter �theoretical� study found
that condensation of the chromosome into 22 large domains
drove segregation, while a less complete condensation into
44 domains led to a failure of segregation, consistent with
the estimate of this paper of thermal disentanglement requir-
ing condensation to N�=30 segments. Finally, mutations or
deletion of bacterial DNA-folding or compacting proteins E.
coli MukB �47� �and its homologue in B. subtilis, bsSMC
�48��, HU �49,50�, H-NS �51�, and Fis �52� have been ob-
served to inhibit chromosome condensation or cause anucu-
late cell �failed chromosome segregation� phenotypes �obser-
vation of a high rate of anuculate cells was used to identify
the bacterial SMC protein MukB; the name of that protein
comes from the Japanese mukaku, for “anuculate” �53��.

The time scale for the condensation process for the 4.7
Mbp E. coli chromosome is given by Eq. �17� as Te
=160 sec, a little less than 3 min. This is appreciably shorter
than the 20-minute minimum time between successive cell
divisions of E. coli, necessary to allow chromosome segre-
gation to occur by the length-condensation mechanism.

Note that during rapid growth of E. coli, the 20-minute
cell cycle is about half of the minimum 40 min required to
fully replicate the chromosome �43�. Therefore, during rapid
growth, one can expect to observe spatially separated sub-
chromosomes in each half of the cell corresponding to par-
tially complete rounds of replication.

The form of Eq. �17� suggests a characteristic “velocity,”
or polymer length per unit time that can be segregated by
random strand passages, v�=N /Te=1 / �300�� segments per
unit time. Considering naked DNA �300 bp per segment, �
�3�10−4 sec� one finds v��3000 bp /sec. If DNA is rep-
licated more slowly than this, then lengthwise condensation
will be able to segregate DNA as replication occurs. On the
other hand, if DNA is replicated faster than this velocity,
entanglements cannot be removed as replication proceeds,
leading to a pileup of tangles which would delay DNA seg-
regation, and possibly stall replication. Since the two diverg-
ing replication forks in E. coli progress at approximately

103 bp /sec, removal of catenations can keep up with DNA
replication, provided that mechanisms are in place to make
sure that lengthwise condensation occurs promptly along
newly replicated DNA.

The coincidence of replication velocity and segregation
velocity suggests that in a rapidly dividing cell, one should
be able to observe a gradient of condensation and corre-
sponding disentanglement as one moves away from the rep-
lication fork. Recent live-cell experiments observe large-
scale separation of labeled chromosome loci �few-hundred
nanometer to micron scale� indicating that segregation oc-
curs progressively with replication even during rapid growth
�54�. Another study has very recently observed that colocal-
ization of replicated loci along the E. coli chromosome sepa-
rate roughly 15 min following their replication, and that im-
pairment of topoisomerase IV �the type-II topoisomerase
responsible for chromosome decatenation in E. coli� sup-
presses this separation, indicating that the colocalization is a
result of sister chromatid entanglement �likely dominated by
“precatenanes,” essentially remnant linking of the mother
cell DNA strands� �42�. Measurements of fluctuations of
such loci during their separation might provide evidence that
termination of locus cohesion is a result of chromosome con-
densation; in this case, separation might correlate with a re-
duction in locus position fluctuation.

Other effects including entropic separation of polymers
due to confinement �55� may also contribute to chromosome
segregation. However, the complete segregation that can be
driven by condensation along the length of the chromosome
explains why chromosome condensation and segregation
proceed in a coupled manner. Direct study of mechanical
properties of isolated bacterial chromosomes might be use-
ful in analyzing the mechanism of condensation, but care
must be taken to carry out this type of experiment in cyto-
plasmlike conditions since conventional chromosome isola-
tion �essentially hypotonic bursting of cells� may lead to loss
of relatively weak protein-DNA interactions that may be im-
portant to maintaining complete chromosome condensation
in vivo.

Even more tricky to diagnose will be entropic depletion
interactions between relatively large �10 nm� nucleoprotein
bodies along the chromosome, which will tend to aggregate
due to depletion interactions with soluble proteins a few na-
nometers in diameter �56�. Bursting a cell releases the
soluble proteins responsible for maintaining the chromosome
as a condensed “phase,” so it expands to take on a nonphysi-
ological �noncondensed� conformation �57–59�. Important
cases of large complexes present in large numbers along the
bacterial chromosome include RNA polymerase �which has
been implicated in bacterial chromosome compaction
�60,61��, and ribosomes attached to the chromosome through
binding to partially transcribed mRNAs. It is important to
note that although greatly expanded, extracted bacterial chro-
mosomes do not swell to the size expected for a simple ran-
dom coil of DNA, indicating that they are appreciably
“cross-linked,” most plausibly by DNA-binding proteins
�58,62�.

3. Eukaryote chromosomes

Electron microscopy studies suggest that the next level of
chromosome folding above the chromatin fiber is formation
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of roughly 100-nm-diameter condensation domains �“chro-
momeres”� �63,64� that organize into a roughly 100-nm-thick
fiber which then folds into a chromatid through a series of
intermediate folding steps �65�. Sister chromatids do not ap-
pear to fully separate until condensation is nearly complete at
late prophase �64�.

Crude application of the lengthwise condensation model
considers a human chromosome of 108 bp organized into
“30 nm” chromatin fiber with roughly 6000 bp per statistical
segment �100 bp/nm along a b=60 nm segment with d /b
�0.5; note that segment length estimates for chromatin vary
quite widely, running up to b�300 nm �66��. This gives N
�104, and again a �e�7 necessary to entirely eliminate cat-
enations from sister duplicate chromatids, as well as to seg-
regate different chromosomes from one another. This level of
compaction corresponds to a linear density of roughly 5000
bp/nm �about 1600 times that of naked DNA� and an in-
crease in thickness to roughly 200 nm. This level of compac-
tion roughly corresponds to that occurring during chromo-
some and sister chromatid separation in late prophase of
mammalian cells �64� and is about 1/4 to 1/6 of the maxi-
mum compaction that occurs at metaphase.

This estimate is encouraging since it provides an explana-
tion of how whole unreplicated chromatids of �108 bp in
length can disentangle from one another while they are
lengthwise-condensing in the presence of topoisomerases, as
occurs in free-solution experiments with Xenopus egg ex-
tracts �67�. Despite the lack of any cytoskeletal �mitotic
spindlelike� structures, unreplicated chromatids in those ex-
periments are able to start from a dense and entangled initial
state, and then simultaneously length-condense while topo-
logically resolving themselves from one another.

However, for eukaryote chromosomes in cells, it should
be kept in mind that near the end of DNA replication chro-
matid pairs are thought to be organized into a series of rep-
licated loop domains joined together along the length of the
chromosome, by specialized “cohesin” chromatid-linking
complexes �6�. The size of chromosome loop domains in
human cells is thought to be �100 kb. Each loop thus cor-
responds to N�20 segments of chromatin fiber, so adjacent
loops will thermally separate from one another with only
minimal length condensation, e.g., by tightening up of nu-
cleosome stacking in chromatin or by formation of chro-
momeres. The gradual removal of cohesin complexes known
to occur in species with larger chromosomes can then allow
larger-scale lengthwise-condensation-segregation �84�. In ad-
dition to lengthwise condensation, at late stages of chromo-
some condensation, addition of reversible cross-linking �con-
densin I� in the presence of topoisomerase II will generate
bulk “chromatin gel” elasticity that will drive chromatids
apart as discussed in Ref. �37�. It is conceivable that once
long-ranged cross-linking starts to occur, self-entanglements
within individual segregated chromosomes may be formed
by topoisomerases.

V. “KNOTTING LENGTH” FOR A RING POLYMER

Flexible polymers have a characteristic “knotting length”
N0, the number of segments at which the probability of hav-

ing a knot along the chain becomes appreciable ��50%� in
an ensemble of random topologies. This knotting length is
more formally defined as the decay constant for the unknot
probability for a given type of polymer with N, i.e., Punknot
�e−N/N0 �31,32,68–71�. The asymptotic exponential decay
comes about due to the necessity for small knotted regions to
appear along a very long polymer with random topology, as
assured by the Kesten “pattern theorem” for random walks
�72�.

The knotting length is known to depend strongly on seg-
ment self-avoidance: ideal random walks have a knotting
length N0�250 �31�, while strongly self-avoiding polymers
have knotting lengths �106 �31,32�. Here, this drastic in-
crease on N0 with self-avoidance will be argued to be related
to the strong dependence of random linking on segment ex-
cluded volume interaction discussed in Sec. II.

If one considers a single circular polymer of N segments,
for each conformation there will be a nearest �in 3d space�
encounter of some pair of segments of contour spacing
�N /2 �Fig. 8�a��. The chain can be reconnected at this point
to form two subchains of length N /2, connected by a short
tether, with only local changes to chain conformation, and
therefore little free-energy cost. This heuristic mapping of
the configurations of a N-segment loop to those of a pair of
tethered N /2-segments loops suggests an approximate recur-
sion relation for the unknotting probability, Punknot�N�
= �Punknot�N /2��2, since given a sufficiently close encounter
at the reconnection point, then if the original chain was an
unknot, the subchains will be unknotted as well.

However, this neglects cases where neither subchain is
knotted, but where the two halves of the original chain are
“knotted together.” Figure 8�b� illustrates such a case for the
trefoil knot: neither subchain is knotted after reconnection.
The recursion relation for the unknot probability can be
modified to account for this effect:

Punknot�N� = �Punknot�N/2��2�1 − Phalves-knotted�N�� , �18�

where Phalves-knotted�N� is the probability that the two halves
of the chain form a knot.

Equation �18� states that an unknotted polymer must not
have either subchain knotted, and must also not have the two
subchains knotted together, and employs a mean-field-type
approximation that subchain knot probabilities of chains of
length N /2 are equal to the knotting of a whole chain of
length N /2, and that knot states of subchains are uncorre-
lated. In addition, this formula ignores the possibility that the
second half of the chain “unties” a knot present in the first
half of the chain, another mean-field-like neglect of correla-
tions. This latter possibility is likely rather improbable given
the use of the closest half-chain encounter for the reconnec-
tion.

All these approximations are likely to be most severe for
N�N0 where subchain knotting is most tenuous and easily
undone, and where knotting of chain halves plays a major
role. Notably, studies of the size of a single knot in a circular
polymer �73–76� indicate that the knotted region is relatively
small, scaling as Nknot�N0.7 for the SAW. This suggests that
near the knotting threshold the knotted region will be local-
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ized, making the decomposition approach of Eq. �18� plau-
sible.

The knotting probability Pknot�N�=1− Punknot satisfies a
similar recursion equation:

Pknot�N� = 2Pknot�N/2� − Pknot�N/2�2

+ �1 − Pknot�N/2��2Phalves-knotted�N� . �19�

It is to be stressed that these recursion formulas are heuris-
tically derived and are an approximate first step towards un-
derstanding topology of a ring polymer in terms of topologi-
cal properties of reconnected subchains.

Given an estimate for Phalves-knotted, Eq. �18� allows
Punknot�N� to be estimated, starting from a small-N cutoff
Nmin where Punknot�Nmin�=1− Phalves-knotted�Nmin� �i.e., setting
Punknot�N�=1 for N�Nmin�. The resulting series for
Punknot�N� approaches a large-N behavior Punknot�e−N/N0,
with knotting length given by

1

N0
= �

k=0

�
− ln�1 − Phalves-knotted�2kNmin��

2kNmin
. �20�

Now Phalves-knotted�N� will be estimated, again using the
mapping of a reconnected N-segment loop to two tethered
N /2-segment chains. The occurrence of a knot on the

N-segment chain requires linking of the N /2-segment chains.
Subchains with Ca=2 are easily reconnected to yield the
simplest �trefoil� knot with its three correlated �same-sign�
crossings �Fig. 8�b�, right to left�. However, there is a second
reconnection of the same close encounter on the Ca=2 link
which yields an unknot �the “��” reconnection of the re-
gion in the dotted circle of Fig. 8�b�, left� Estimating that
when �Ca��2 configurations have their near collisions ran-
domly reconnected one obtains a knot approximately half the
time:

Phalves-knotted�N� =

�
Ca=�2,�3¯

1

2
P�Ca,N/2�

�
Ca=0,�1,�2,�3¯

P�Ca,N/2�
, �21�

where P�Ca,N� is the probability of catenation Ca of two
tethered polymers of N segments. The possible but less likely
reconnection of Ca=1 links to form knots is neglected here.
It is to be emphasized that the estimation of Phalves-knotted in
terms of catenation of subchains is at best a rough approxi-
mation.

Figure 8�c� shows the resulting Punknot using Eq. �18�,
with unknot probabilities computed via Eq. �21� using the
catenation probabilities �free energies� of Sec. III A cutoff
Nmin=40 is used as the mean-squared catenation of chains
below N=20 is negligible for all strengths of self-avoidance
�Fig. 3�. The unknotting probability displays an exponential
decay with N, Punknot�e−N/N0, thanks to the product form of
the solution to Eq. �18�. For the IRW �d=0� case, N0=290,
while for SAWs with d=0.01, 0.05 and 0.2, N0=390, 980
and 12600, respectively. Direct simulation calculation of N0
for hard-cylinder polymers �32� gives values of N0=270,
370, 990, and 16 000.

The good accord between the results for numerical studies
of random knotting with this crude catenation-reconnection
argument provides some insight into the origin of the poly-
mer length scale N0. The large value of the number N0 in the
IRW case arises via the numerically small prefactor in Eq.
�7�; the dramatic increase in N0 to a value in the range 104

for that d=0.2 SAW arises via the ln N scaling of �Ca2	0.

VI. CONCLUSIONS

This paper has centered on the question of the statistics of
the Gauss linking invariant of two tethered circular poly-
mers. The key result is while �Ca2	0�N1/2 for IRWs, it is
�ln N for SAWs. Consequences of this for the free energy of
polymers as a function of Gauss invariant, entropy-driven
separation of polymers, and the knotting length of polymers
have been presented.

A. N1Õ4 scale for IRW catenation

The basic result for the IRW ��Ca	2�N1/2, or more loosely
�Ca��N1/4� was first obtained by Tanaka �7� and can be ex-
tracted from the essentially exact Gaussian polymer calcula-
tions of Ref. �14� �Sec. II B�. This result is also consistent
with other related calculations involving �Ca2	0 for flexible
polymers. Brereton and Shah �20,21� used a mean-field ap-

(a)

(b)

(c)

FIG. 8. �a� Close encounter of two segments spaced by roughly
N /2 along a large circular polymer of N segments allows it to be
considered as two tethered rings. �b� A reconnection converting a
trefoil knot on a single ring of N segments to a Ca=2 link of two
unknotted rings of N /2 segments. �c� Results for unknot probability
Punknot as a function of N for polymers with d=0 �IRW�, d=0.01,
d=0.05, and d=0.2. Exponential decays �Punknot�e−N/N0� determine
knotting lengths N0.
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proach to the n→0-component field theory of two chains to
show �Ca2	0��N where � was the segment concentration
contributed by one of the chains in the vicinity of the other.
Plugging in the result for the segment concentration �
�1 /N1/2 appropriate to describe the interior of an N-segment
Gaussian polymer yields �Ca2	0�N1/2.

More detailed calculations aimed at computation of link-
ing in many-ring systems obtained the same general result
��iCai

2	0��N, where Cai denotes the linking of one chain
with the others in a dense melt, using a variety of theoretical
methods �8,10–14�. In the dense many-chain context, ��1,
but each chain volume is shared by �N1/2 interpenetrating
chains, leading back to �Ca2	0�N1/2 for any two of the
Gaussian chains in the system which are within a chain ra-
dius of one another.

B. 4/3 law for IRW catenation free energy

In Sec. III A 1 scaling arguments indicated that for �Ca�
�N1/4, a transition to a locally entangled state should occur,
with free energy F� �Ca /N1/4�4/3. This behavior was observed
in numerical simulations. The 4/3 free-energy exponent
ought to be exactly calculable since it is a property of the
cumulants of the Gauss invariant for the simple Gaussian
polymer; the framework of Otto �14� might be useful for this.

C. SAW catenation free energy

When segment excluded volume is present, catenation
fluctuations are greatly suppressed. Exact calculations are
out of the question, but a simple scaling argument indicates
that �Ca2	0� ln N. This growth law matches the similar loga-
rithmic dependence found for a SAW encircling a point two
dimensions �77,78�, or a straight line in three dimensions
�79�. Numerical results of this paper are consistent with this
scaling behavior.

The small value of �Ca2	0 for the SAW leads to a quickly
increasing free-energy cost of catenation. This is argued to
lead to a catenation condensation effect �30�, and a free en-
ergy linear in �Ca�. It remains to be convincingly determined
whether there is clear segregation of catenations from uncat-
enated polymer, or whether fluctuations lead to alternating
catenated and open regions on large scales in the N→�
limit. Analogy with the localization of knots on large poly-
mers �73–76,80,81� suggests the former.

The first-order-transition-like behavior observed in this
paper is reminiscent of the first-order transition inferred to
occur for a single self-avoiding polymer subject to a field
coupled to its writhe �82�. Analogous RG calculations could
be done for the case of two tethered self-avoiding rings sub-
ject to a field coupled to their Gauss invariant; the results of
this paper suggest that a finite value of � will drive a first-
order transition.

D. Applications to DNA and chromosomes

The results of this paper have application to problems
involving segregation of chromosomes or chromosome loop
domains. For naked DNA, one has a long and thin statistical
segment �b=100 nm, d /b�0.05 under physiological solu-

tion conditions� that contains 300 bp. When considering bac-
terial chromosomes, one must note that the DNA is coated by
a variety of nonspecifically bound DNA-bending proteins;
these likely reduce the effective segment length to b
�60 nm while increasing the relative thickness to d /b
�0.1; the resulting statistical segment will contain some-
what more DNA �500 bp simply due to the geometry of
bending. Thus a 106 bp bacterial chromosome can be con-
sidered to be a roughly 104-segment polymer.

For eukaryote chromatin, the compaction by the lowest
level of folding is large; formation of closely spaced nucleo-
somes yields a segment length of b�60 nm, but now con-
taining 6000 bp of DNA, and with a relative thickness d /b
=0.5. The result is that a 108 bp chromosome should be
considered to be a �104 to 105 segment polymer. According
to this paper, the formation of chromatin fiber has the dra-
matic effect of keeping entanglement complexity in chromo-
somes of higher eukaryotes to levels comparable to that
found in bacterial cells. The large d /b for chromatin fiber
further enhances the driving force for entanglement removal.

E. Dynamics of chromosome segregation

Free energy of catenation was shown to provide a driving
force for segregation of chromatin domains; its dependence
on polymer segment properties was shown to provide a
physical basis for lengthwise condensation to drive segrega-
tion of large chromosome segments, even for “blind” topoi-
somerases which pass whichever DNA segments happen to
collide with them. In fact, it has been shown that type-II
topoisomerases actually use ATP to preferentially remove en-
tanglements and knots from DNA molecules in vitro �83�.
This effect should further accelerate the lengthwise-
condensation entanglement resolution process.

The segment-folding model analyzed in Sec. IV consid-
ered the case where the segment width-to-length d /b ratio
was held fixed during the lengthwise condensation process:
this constraint was used mainly for convenience, and the
same argument can be made for situations where d /b
changes during the condensation process. For low-level fold-
ing it is possible that d /b may approach 1 �i.e., by formation
of strings of beadlike folding intermediates �64��. In this
limit excluded volume driven segregation is further en-
hanced; for d /b�1 the knotting threshold for a polymer
rises to N0�106. This mechanism can drive the majority of
the decatenations out of bacterial or eukaryote chromosomes
at small scales early during chromosome segregation, by a
rather mild lengthwise condensation. This mechanism is ca-
pable of separating replicated chromosome “loop domains”
at a rate comparable to that of replication itself. Lengthwise
condensation may be accomplished by relatively passive
DNA-wrapping, -looping or -folding proteins, or by more
active mechanisms such as the SMC protein complexes �84�.

A key feature of the length-condensation mechanism that
is that it can work perfectly well in open free solution. In
eukaryote cells, chromosome segregation is known to be able
to proceed rather well in open solution and in the absence of
cytoskeletal, mitotic spindle, or other cell-structural compo-
nents. For example, experiments with cell extracts are able to
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take sperm DNA and condense it into chromatin, which then
folds into prometaphase-like chromatids which segregate
from one another �see Fig. 1 of Ref. �67��.

In the crowded confines of a cell, this mechanism will
also work well. If condensation proceeds along length, with-
out generating interchromatid cross-links, then entangle-
ments will gradually be eliminated, first at small scales, and
then later at large scales. As condensation proceeds, first sec-
tions of chromosomes and then finally chromatids and whole
chromosomes will be forced apart. The only limitation on the
mechanism is whether when condensation is complete, the
chromosomes are compact enough to fit into the cell without
running into one another. All cells appear to conform to this
constraint during chromosome segregation.

During the later stages of eukaryote chromosome segre-
gation long, relatively stiff condensed chromosomes are
formed. In this case, d /b may become very small, since for a
uniform elastic medium, one would expect b� /b��d� /d�4

�36�. Whole metaphase eukaryote chromosomes do appear to
behave as uniform elastic media insofar as their bending and
stretching elasticities satisfy this relation �84,85�, with d /b
�10−3 �segment length of 103 microns� for large animal
�newt� chromosomes. Evidence for similar stiffness of chro-
mosomes in vivo includes the circular shapes seen for mei-
otic metaphase chromosomes between crossover points �37�
and circular shapes taken by circularized chromosomes �86�.
In this situation, disentanglement of adjacent chromatin do-
mains �chromatids� is driven by osmotic repulsion and elas-
ticity of adjacent condensing domains �37�, a mechanism dis-
tinct from the early-condensation disentanglement discussed
in Sec. IV.

In the bacterial chromosome case, microscopy studies
suggest large-scale chromosome condensation occurs during
rapid cell growth �43,60,61�, suggesting a role for a
condensation-resolution mechanism as discussed in this pa-
per. Jun and Mulder �55� noted that condensation-based
mechanisms may not be necessary for segregation of bacte-
rial chromosomes, given the tendency for confined polymers

to separate from one another in a cylindrical pore. In fact,
during slow growth of E. coli in poor growth media, chro-
mosome segregation involves much less condensation than
during rapid growth �61�. It is possible that a greater degree
of lengthwise-condensation-resolution occurs during rapid
growth in E. coli to facilitate rapid chromosome segregation;
multiple partial copies of the chromosome are separated dur-
ing rapid growth �54�. During slow growth slower segrega-
tion driven by a lesser degree of chromosome condensation
might be sufficient.

F. Further questions about knotting length

The qualitative change in the scaling of �Ca2	0 generated
by excluded volume interactions suggests a mechanism to
explain the drastic increase in the knotting length for poly-
mers with self-avoidance �recall N0�300 for IRWs, and

106 for SAWs �31��. A heuristic correspondence between
ensembles of ring polymers and tethered rings was used to
convert the problem of knotting to one of linking.

A rough and approximate calculation based on the results
of Sec. II is encouraging; by summing over occurrences of
�Ca��2 links to estimate knotting of halves of one ring, one
obtains estimates for N0 in good accord with available nu-
merical data �31,32�. Certainly the estimate of the probability
of reconnection of links with �Ca��2 to knots �50%� made
here is crude but this could be studied in much more detail
by directly examining linking and knotting statistics of re-
connections of knotted chains. The mechanism of Sec. V
provides some insight into the large size of N0 and its strong
dependence on self-avoidance, in terms of scaling laws and
order-unity constants.
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